Intent Detection
Intent detection automatically identifies the purpose or category of a conversation using AI intelligence. You can define custom intent categories, and the system will classify the transcription accordingly with a confidence score.
How to Enable
"enable_intent_detection": "true"During Transcription
Parameters
enable_intent_detection(required): Set to "true"intent_choices(optional): JSON array of intent categories (max 5)
Request
Don’t forget to replace YOUR_API_KEY with your own secret key.
import requests
url = "https://tb2.shunyalabs.ai/v1/transcriptions"
headers = {"X-API-Key": "your-api-key"}
with open("customer_call.wav", "rb") as f:
files = {"file": f}
data = {
"enable_intent_detection": "true",
"intent_choices": '["support", "billing", "technical", "sales"]' # optional
}
response = requests.post(
url,
headers=headers,
files=files,
data=data
)
print(response.json())Example Output
{
"success": true,
"text": "Hi, I'm having trouble with my account login. I keep getting an error message when I try to reset my password.",
"segments": [...],
"intent": {
"intent": "technical",
"confidence": 0.89
}
}Standalone Intent Detection
Parameters
text(required): Input text to analyzeintent_choices(optional): JSON array of intent categories (max 5)
Request
Don’t forget to replace YOUR_API_KEY with your own secret key.
import requests
url = "https://tb.shunyalabs.ai/v1/intent"
headers = {"X-API-Key": "your-api-key"}
data = {
"text": "I was charged twice for my subscription this month. Can you help me get a refund?",
"choices": '["support", "billing", "technical", "sales"]' # optional
}
response = requests.post(url, headers=headers, data=data)
print(response.json())Standalone Example Output
{
"intent": "billing",
"confidence": 0.92
}Best Practices
- Limit intent choices to 3–5 categories for best accuracy
- Use clear, distinct category names
- Avoid very short or ambiguous input text
- Confidence scores above 0.8 are generally reliable
Use Cases
- Customer support call routing (billing, tech, sales)
- Chatbot and conversational AI analytics
- Survey and feedback response categorization
- Meeting, podcast, and interview classification
- Call center trend and issue analysis